Stem cells have been used to completely restore a severely damaged artery, leading to hope that the therapy could be used to fix damaged human organs.

Researchers at the Texas Biomedical Research Institute have shown for the first time that embryonic baboon stem cells can be used to heal a damaged artery that would not have fixed itself.

The artery began to heal three days after being treated with stem cells and was 100 percent restored after two weeks.

John VandeBerg, chief scientific officer at the institute, said: "We first cultured the stem cells in petri dishes under special conditions to make them differentiate into cells that are the precursors of blood vessels, and we saw that we could get them to form tubular and branching structures, similar to blood vessels."

They removed the cells that line the inside surface of segment of the artery and put the stem cells inside the artery.

The stem cell segment was then connected to plastic tubing inside a bioreactor - a device designed to grow cells and tissues. Researchers then pumped fluid through the artery as if blood was flowing through it and the outside of the artery was bathed in fluid to sustain the cells.

Real potential for stem cell medicine

After three days, the inner surface of the stem cell-treated artery had started to regenerate and after 14 days, the artery had been perfectly restored to a fully functional artery.

In order to ensure the artery would not have restored itself, the scientists took a control arterial segment but did not seed it with stem cells - no healing took place.

VandeBerg said: "This is evidence that we can harness stem cells to treat the gravest of arterial injuries.

"Just think of what this kind of treatment would mean to a patient who had just suffered a heart attack as a consequence of a damaged coronary artery.

"And this is the real potential of stem cell regenerative medicine - that is, a treatment with stem cells that regenerates a damaged or destroyed tissue or organ."

The scientists now hope to be able to take a cell from any other body tissue and induce it to become an embryonic stem cell able to turn into any tissue or organ.

"The vision of the future is, for example, for a patient with a pancreas damaged because of diabetes, doctors could take skin cells, induce them to become stem cells, and then grow a new pancreas that is just like the one before disease developed," VandeBerg said.